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Abstract. A method is presented to accelerate the convergence of finite-lattice sequences to 
their bulk limit. The calculation of highly accurate estimates of the critical parameters of the 
bulk system is then possible. Applied to the Hamiltonian version of the 2 3  model 
(three-state Potts model) in (1 + 1) dimensions, these techniques yield estimates for the 
exponents -y=1.444*0.001, U-0.8333iO.0003 and a =0.33*0.01. For theZ5model,  
the presence of a Kosterlitz-Thouless transition is confirmed. 

1. Introduction 

The finite-size scaling theory of Fisher and Barber (1972) has been formulated in the 
context of Hamiltonian lattice field theory? by the present authors (Hamer and Barber 
1980). This approach involves the calculation of the eigenvalues of the lattice Hamil- 
tonian on a sequence of finite lattices of increasing size. From the way in which these 
eigenvalues (and other derived quantities of physical interest) scale with the size of the 
lattice, one may infer the critical behaviour (if any) of the bulk, infinite system. This 
scheme has been successfully tested on various Hamiltonians in (1 + 1) dimensions 
(Hamer and Barber 1981a, b). Other applications and some significant theoretical 
extensions have also been made by an Urbana group (Roomany et a1 1980, Roomany 
and Wyld 1980, 1981). 

The finite-lattice sequences which arise in these calculations generally display a 
smooth and regular convergence t,owards their bulk limit. The purpose of the present 
work is to show that this convergence can be substantially accelerated by sequence 
transformation methods. As a result, very accurate estimates for the bulk critical 
parameters can be obtained. 

The particular sequence transformations we employ are due to Vanden Broeck and 
Schwartz (1979). These authors presented a family of sequence transformations 
depending on an arbitrary real parameter a, which includes the Pad6 table (a  = 1) and 
the iterated Aitken-Shanks table ( a  = 0) as special cases. By judicious choice of the 
parameter a, Vanden Broeck and Schwartz were able successfully to accelerate the 
convergence of a wide variety of sequences. Elsewhere (Barber and Hamer 1981), we 
have shown analytically that by choosing a = -1, the estimate of the limit of a sequence 
converging as O(n-’)), as n+m, can be markedly improved. Since this type of 
behaviour is expected in finite-lattice sequences near a critical point, this particular 

7 For an introduction to Hamiltonian lattice field theories of spin and gauge systems, see Kogut (1979) 
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sequence transformation should significantly increase the accuracy of the lattice 
extrapolation procedure. 

We find that this hope is fulfilled. Specifically, we apply the technique to the Z3 and 
Z5 spin models in (It- 1) dimensions. For the 2 3  model, which is equivalent to the 
three-state Potts model, we obtain the estimates of the critical exponents v = 
0.8333 f 0.0003, y = 1.444f 0.001 and cy = 0.33 * 0.01. (The specific heat exponent cy 

mentioned here should not be confused with the Vanden Broeck and Schwartz 
parameter introduced earlier.) These results are in excellent agreement with the 
universality hypothesis (Alexander 1975) that the three-state Potts model should have 
the same exponents as the ‘hard heiagon’ model of Baxter (1980), namely v -- 5, y = 
and cy = 3. 

For the Z5 model, our results agree qualitatively with those of the perturbation 
calculation of Elitzur et a1 (1979). We find a three-phase structure with an exponential 
Kosterlitz-Thouless type transition at the dual critical points delimiting the central 
massless phase. For the strong-coupling critical point we find A,=  0.990f0.005, and 
for the exponential index we find u = 0.6 f 0.1, consistent with the standard Kosterlitz- 
Thouless value of (+ =I 0.5 (Kosterlitz 1974). 

The layout of the paper is as follows. In § 2, we discuss the methods employed. First 
we summarise the essential formulae involved in (a) Hamiltonain lattice field theory for 
Z, models and (b) finite-size scaling. In 0 2.3 the sequence extrapolation techniques are 
presented. Section 3 contains the results of the calculations for the 2 3  model and 0 4 
those for the Zs model. Section 5 consists of an overall summary and conclusion. 
Lastly, there is an Appendix on numerical methods. 

1 

2. Methods 

2.1. Hamiltonian field theory for Z, models 

The Hamiltonian field theory version of the Z, models has been given by Elitzur et a1 
(1979, henceforth referred to as EPS). On a one-dimensional spatial lattice of M sites 
with a continuous time variable, the lattice Hamiltonian in the strong-coupling regime is 

(2.1) 

where we apply periodic boundary conditions so that R&+, = R:. The operators L, 
have as their spectrum Z,, the integers modulo p ,  and R’ are raising and lowering 
operators for the ‘spin’ L,. The parameter A = 2/g2 (where g is the conventional field 
theory coupling) plays the role of temperature. Finally, h is an external symmetry 
breaking ‘magnetic’ field which preferentially selects one of the p equivalent states of 
spin L,. The cases p = 2 and p = 3 are equivalent to the Ising and three-state Potts 
models respectively. 

The Z, models are self-dual; subject to appropriate boundary conditions, the 
Hamiltonian (2.1) satisfies the relation (EPS) 

M 

H(A, h )  = - 1 [ c o s ( ~ T L , / ~ )  +;A (R :RL-i+ R;R:-i ) -;h(R 7 + R;)], 
i = l  

H ( A )  = AH(l/A) .  (2.2) 
Thus the mass gap F(A)  between the ground state and the first excited state obeys a 
similar relation, 

F(A)  = AF(l /A) .  (2.3) 
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It then follows that if there is a single second-order phase transition in such a model (i.e. 
a unique point at which the mass gap vanishes), it must occur at the self-dual point A = 1. 

The correspondences between Hamiltonian field theory and statistical mechanics 
are by now well established (see e.g. Kogut 1979, Hamer et a1 1979, Hainer and Kogut 
1979, Hamer and Barber 1981a, b). All quantities of interest to us can be deduced from 
the lowest two eigenvalues of the Hamiltonian (2.1), Eo and El. In particular, the mass 
gap, or inverse correlation length, is 

F(A,  h ) = E i ( h ,  h)-Eo(A, h ) ,  (2.4) 

while the Callan-Symanzik p function is given by (Hamer et a1 1979) 

P ( g ) / g  = F ( A ,  O) /[F(h ,  0 )  - 2 a F 0 ,  o) /a  In A 1. (2.5) 

We now turn to thermodynamic quantities. The free energy corresponds to the ground 
state energy, E&, h )  with A playing the role of temperature. Thus the ‘specific heat’ is 

while the ‘zero-field susceptibility’ is 

1 a’ 
x ( A )  = -z jpEo(A,  h)Ih=o. (2.7) 

All aspects of critical behaviour of interest in statistical mechanics can consequently be 
investigated from the Hamiltonian field-theoretic formulation. We shall explore the 
critical behaviour of Z3 and Z S  using finite-size scaling. 

2.2. Finite-size scaling methods 

We have previously discussed (Hamer and Barber 1980, 1981a, b) the application of 
finite-size scaling techniques to Hamiltonian field theory. Let us briefly summarise the 
essential points. 

The basic procedure is to calculate the eigenvalues of the Hamiltonian on a 
sequence of lattices of finite size and to derive from them the quantities given in 
equations (2.4)-(2.7). The asymptotic behaviour of these sequences for M large but 
finite is prescribed by finite-size scaling (Fisher and Barber 1972) in terms of the critical 
parameters of the bulk system. 

Two regimes of coupling are of interest to us. For A < A,, the critical coupling of the 
infinite system, the finite-lattice estimates AM of any quantity A are expected to 
approacht the bulk limit A ,  as 

(2.8) AM - A ,  = O{exp[-constant MF,(A)]} 

where F,(A) is the mass gap of the infinite system. As A + A c ,  this exponential 
convergence breaks down. 

To determine the behaviour of finite-size estimates at A,, we make the crucial 
assumption (Fisher and Barber 1972) that at A, the correlation length is proportional to 
the linear dimension of the finite lattice (the maximum it can be). Consequently the 

t This is true in the case of periodic boundary conditions of interest here. Other boundary conditions give rise 
to algebraic corrections in M-’. 
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mass gap varies as 

FM (A,) - constant/M asM-,oo. (2.9) 

A series of estimates { A M }  of the position of the critical point can thus be calculated by 
forming (Hamer and Barber 1980) the ‘scaled mass gap ratio’ for successive lattice sizes, 

RM (A E MFM (A ) / ( M  - ~)FM-I(A 1, (2.10) 

and defining A M  by the solution of 

RM(A) = 1. (2.11) 

Other quantities are assumed to scale in proportion to the mass gap: more 
specifically, if *(A) is some quantity which diverges in the bulk system as 

*(A) - A ~ A , - A  I+, A +A,,  (2.12) 

then on a lattice of A4 sites, TM(A,) should scale as 

vM(,ic) -constant M*”, (2.13) 

where U is the exponent of the bulk correlation length. Hence one can estimate the ratio 
$ / u  from the sequence 

MC?V,~(A,)-TM-I(A,)I/~M-I(A~) + $!‘/v asM+oo.  (2.14) 

The corrections? to the limit are expected to be algebraic in M-l.  The exponent v itself 
follows, since the p function is expected to vanish linearly at A,, and therefore the 
finite-lattice estimates P ~ ( A , )  -M-””. 

Roomany and Wyld (1980) have recently shown how finite-size scaling can be 
regarded as a renormalisation-group technique (see also Suzuki 1977, Nightingale 
1977, Sneddon and Stinchcombe 1979). This treatment leads to an alternative way of 
estimating the p function via the approximants 

(2.15) 

which converge remarkably quickly even for quite small values of M. The scaling 
formula (2.13) does not apply to PgW, since the lattice-size dependence has already 
been ‘scaled out’ by the use of results from two consecutive A4 values. 

The numerical methods which may be used to calculate the finite-lattice eigenvalues 
have been presented elsewhere (Hamer and Barber 1981b, Roomany eta1 1980). Some 
further comments are made in the Appendix. 

2.3. Sequence extrapolation techniques 

The finite-size scaling techniques summarised above seem to work quite well in practice 
(Hamer and Barber 1981a, b, Roomany et a1 1980, Roomany and Wyld 1980,1981). 
For example, for the Hamiltonian version of the two-dimensional Ising model, the 
results for chains of M <  10 sites give estimates of the critical point accurate to O.l0/o 

t For the king model, one can show analytically (Hamer and Barber 1981a) that the corrections are at least 
O(M-2) ;  more generally, one expects them to involve the Wegner (1972) correction-to-scaling exponent and 
hence be stronger. 
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and of the critical exponents to 0.5% (Hamer and Barber 1981a). For other models the 
accuracy is, however, rather less. 

Our object now is to explore the possibility of accelerating the convergence of the 
finite-lattice sequences and thereby to improve the estimates of the bulk critical 
parameters. Techniques of this sort, such as Neville tables, are already commonly used 
in conjunction with series analyses in statistical mechanics (see e.g. Gaunt and Gutt- 
mann 1974, Hunter and Baker 1973). 

The particular sequence transformations we employ are due originally to Vanden 
Broeck and Schwartz (1979). Given a sequence of values AM which converge to some 
limiting value A ,  = limM,, AM, one forms a table of approximants to A ,  denoted by 
[M, L], where 

[M, 01 = AM (2.16) 

and the (L + 1)th column of approximants is generated from the Lth and (L - 1)th 
columns via the formula 

1 + 1 - a L  + 1 
[M, L + I]-[M, L] [M, L - 11-[M, L]  - [M + 1, LI-[M, L] [ M -  1, LI-[M, L]’ 

(2.17) 

with the auxiliary condition [M, -11 =CO imposed. The set of real parameters {aL} is 
arbitrary. We shall refer to these approximants as ‘VBS approximants’. 

This general family of transformations includes some well known special cases. For 
eL = 1, for all L, Wynn’s E algorithm for generating the Pad6 table (Wynn 1966) is 
recovered, while with aL = 0, for all L, the transformation is equivalent to an iterated 
Aitken-Shanks table (Shanks 1955). The hope is that each column of the table will be 
more rapidly convergent than its predecessor. 

There is, however, little theory behind the use of the transformations or in the 
selection of an ‘optimal’ value for the a’s. Our exploitation of the transforms is based 
on two observations. Firstly, if the original sequence elements are exactly in geometric 
progression, 

(2.18) 

then one application of the transformation (2.17), with effectively a0 = 0, eliminates the 
‘transient’ cqM and gives the correct limit B. Thus sequences converging as in (2.8) 
should be considerably acceleratedt by iterating (2.17) with aL = 0. 

We have tested this possibility on the Ising ( 2 2 )  model for which the bulk limit is 
known (Pfeuty 1970). Table 1 shows a typical extrapolation for the mass gap at A = 0.6 
(A, = 1). The first column lists a sequence of finite-lattice estimates taken from the exact 
results of Hamer and Barber (1981a) for M S  10. Successive columns give the VBS 

approximants using aL = 0 for all L. While the original finite-lattice estimates have 
evidently converged to a0/o of the exact limit of 0.8, use of the approximants improves 
this convergence by another four orders of magnitude. 

The second relevant observation regarding the transformations (2.17) concerns the 
acceleration of sequences converging as 

A M  -A,+ bM-”’+ b2ACA2+ * * , M+CO, (2.19) 

A M  = [M, 01 = B  +qM, 

t. This is actually an example of the Aitken-Delves S 2  algorithm of numerical analysis applicable to linear 
convergence (see e.g. Ralston 1965). 
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Table 1. Table of VBS approximants (0 = 0) to the Ising model mass gap for A = 0.6. The 
left-hand column consists of successive finite-lattice results, for M = 2 to 10. 

1.132 3818 
0.943 5596 0.823 5581 
0.870 1880 0.807 3633 0.800 5777 
0.836 3431 0.802 5814 0.800 1872 0.800 0100 
0.819 4415 0.800 9860 0.800 0653 0.800 0020 0.800 0005 
0.810 6192 0.800 4022 0.800 0236 0.800 0007 
0.805 8850 0.800 1725 0.800 0089 
0.803 2962 0.800 0770 
0.801 8613 

where A I  < A 2 ,  Elsewhere (Barber and Hamer 1981) we have shown analytically that if 
AM =[MI 01 satisfies (2.19), then 

[M, 21 = A, + O(M-’*’) (2.20) 

provided a1 = -1. The value of A ‘  is the minimum of A 2  and A + 2. Again this result can 
be iterated, the appropriate values of at being 

(YL = -[1-(-)=]/2, L = 0 , 1 , 2 , * . - .  (2.21) 

This is the transformation we use in the subsequent analysis of finite-lattice sequences in 
the vicinity of the bulk critical point. 

Since the apparent convergence of the VBS tables can sometimes be misleading, we 
have found it useful to ‘M-shift’ our sequences: that is, we add another parameter e by 
replacing the multiplying factor M in (2.14) by (M + E ) .  Shifts of this form are common 
in the ratio analysis of series coefficients (see e.g. Gaunt and Guttmann 1974). The 
exact limit of the sequence (2.14) is unaffected by this change, which, however, has the 
effect of decreasing the significance of corrections which are integral powers of M-’. In 
addition, by looking at the stability of the table of VBS approximants with respect to 
changes in E ,  one may both select the ‘best estimate’ for the limit and obtain some idea 
of its accuracy. 

3. Results for Z3 model 

The Z3 model, as noted earlier, is equivalent to the three-state Potts model for which a 
conventional critical point is expected. A finite-size analysist of the mass gap has been 
reported previously by Roomany et a1 (1980). However, as we shall see, the accuracy of 
this calculation can be considerably improved by the use of a table of VBS approximants. 

The two lowest eigenvalues of the Hamiltonian (2. l), together with their relevant 
derivatives, have been computed using the methods summarised in the Appendix. 
These calculations were carried out for chains of up to ten sites with periodic boundary 
conditions. The results for various quantities of interest are listed in table 2. These data 
are correct to the last figure quoted, and for the mass gap probably to 

t Finite-size scaling has also been used, by Nightingale and Blote (1980), to investigate the conventionally 
formulated three-state Potts model. 
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Table 2. Finite-lattice results for the Z3 model as a function of lattice size M. Listed are the 
critical point estimates AM and values at A = A, = 1 of the mass gap FM, the p function p M / g ;  
the specific heat CM and the susceptibility xM. 

1 
2 0.75280651 
3 0.95428477 
4 0.98353403 
5 0.99203847 
6 0.99545411 
7 0.997 11227 
8 0.99802470 
9 0.99857360 

10 0.998 926 56 

1.000 000 000 
0.361 661 031 
0.217 322 900 
0.153 075 335 
0.116 976 574 
0.093 994 260 
0.078 156 144 
0.066 623 193 
0.057 876 606 
0.051 032 229 

0.594 592 199 
0.380 157 223 
0.280 646 979 
0.222 732 323 
0.184 734 369 
0.157 853 417 
0.137 820 880 
0.122 309 965 
0.109 942 479 

0 
0.433 0124 
0.652 6328 
0.819 0950 
0.957 9403 
1.079 0415 
1.187 4918 
1.286 3330 
1.377 5694 
1.462 5929 

0.666 658 
2.821 367 
5.943 208 
9.936 795 

14.739 091 
20.304 015 
26.595 732 
33.585 213 
41.247 03 

3.1. Critical point 

We consider first the sequence for the critical coupling. This sequence consists of the 
values AM such that & ( A M )  = 1, where & ( A )  is the scaled mass-gap ratio defined by 
(2.10). To determine AM, the equation & ( A )  = 1 was solved by extrapolation from a 
cluster of five points about A = 1 using finite-difference methods. 

The sequence of values of A M  listed in table 2 already suggests A, = 1. The VBS table 
with aL specified by (2.21) converges extremely fast and yields the estimate 

A , =  1.000 OO*O.bOO 05. (3.1) 

This result confirms with high accuracy the EPS conclusion that the 2 3  model has two 
phases, separated by the self-dual point A = A c  = 1. For the remainder of our 2 3  

calculations, we shall assume that A, is exactly unity. 

3.2. p function 

Turning now to the critical exponents, we estimate first 1 / u  using the finite-lattice 
estimates of the p function (2.5) together with (2.13) and (2.14). As described in § 2.3, 
the initial estimates are ‘M-shifted’. That is, we form the sequence 

(3.2) P M  ( E  ) = (M + E ) [ P M -  I (A c) - BM (A c ) I / p ~ -  1 ( A  *)i 

where E is a free parameter. In view of (2.13), 

lim p M ( & )  = l / u  
M-rLV 

(3.3) 

for all E. 

Table 3 presents the tables of VBS approximants to (3.2) for E = 0 and E = 0.7; both 
are reasonably convergent. To distinguish between them, we refer to figure 1,  which is a 
plot of the last iterate against E .  The significant feature is the relative insensitivity to E 

over the range E b 0.4. Thus we take the table of VBS approximants for E = 0.5 as our 
‘best’ extrapolation and conclude that 

l / u  = 1.2000~0.0005.  (3.4) 
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Table 3. VBS approximants to 1 / v  for Z3 model. The left-hand column lists successive 
values of the sequence P , ( E )  defined by (3.2) for M = 2 ,3 , .  . . , 10 and the indicated value of 
the M-shift E .  

( a )  E =o.o 

1.276 678 
1.197 294 1.179 153 
1.182 527 1.178 094 1.178 477 
1.117 912 1.178 787 1.178 960 1.178 924 
1.178 816 1.179 026 1.178 921 1.178 963 1.178 965 
1.179 506 1.177 267 1.178 323 1.178 965 
1.180 504 1.162 603 1.169 538 
1.181 550 1.212 278 
1.182 581 

( b )  E =0.7  

1.723 515 
1.476 662 1.341 853 
1.389 470 1.295 290 1.200 474 
1.344 194 1.271 839 1.200 392 1.200 593 
1.316 345 1.257 646 1.200 252 1.199 889 1.200 015 
1.297 457 1.248 115 1.200 151 1.200 156 
1.283 798 1.241 267 1.200 156 
1.273 459 1.236 109 
1.265 362 

0 Or, O B  
T l L  

E 

Figure 1. Plot of the last iterate of the sequence p M ( & )  (equation (3.2)) for l / v  as a function 
of the shift parameter E .  

This is a considerable improvement on the estimate of l / v  -- 1.19rt0.03 obtained by 
Roomany et a1 (1980). 

The same sequence transfwmations (2.17) can also be applied to the Roomany- 
Wyld approximants pkw defined by (2.15) to obtain an accurate estimate of the p 
function of the infinite system over the whole of the strong-coupling range 0 6 A s 1. 
This function is shown in figure 2. The slope at the critical point is - (2ACv)-', which 
yields 1 / v  very close to 1.2, in agreement with the more accurate estimate (3.4). 
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1 , \  

0 0 2  OL 0 6  0 8  0 
h 

Figure 2. The Cailan-Symanzik function p ( g ) / g  plotted against h for the Z3 model. The 
curve was obtained by sequence extrapolation from the Roomany-Wyld finite-lattice 
estimates. Expected errors are less than the width of the line. 

3.3. Susceptibility and specific heat 

Estimates of the exponent ratio y / v  follow from the susceptibility. Using the same 
analysis as described above, we find that the ‘best’ extrapolation occurs for E = -0.4, 
whence we obtain (see table 4) 

y / v  = 1.733*0.001. (3.5) 

The specific heat presents special problems. While (2.13) remains valid in the limit 
M + CO, one also expects a ‘regular’ background. Thus the asymptotic behaviour 

CM(A,)=AM“’”+B+o(l), M-+co, (3.6) 

is probably a better form to fit finite-lattice data. In view of (3.6), the sequence 
(M + &)[CM(Ac) - CM-l(Ac)]/CM(Ac) approaches a / v  as O(M-“’’). Since we expect 
a / v  - 0.4, the convergence of the table of VBS approximants will be considerably slower 
(Barber and Hamer 1981) than in the previous cases. 

Table 4. VBS approximants for ?/U for Z, model ( E  = -0.4). 

1.770 40 
1.747 09 1.736 53 
1.739 82 1.734 61 1.733 13 
1.736 79 1.733 89 1.733 32 1.733 01 
1.735 30 1.733 60 1.733 85 
1.734 51 1.726 94 
1.733 79 



2018 CJHarrier and M N B a r b e r  

This is indeed the case, and the best we can do with our previous form of analysis is 
the estimate 

a / v  = 0.40k0.05. (3.7) 

D , ~  = c ~ ~ ( A , ) - c ~ . . ~ ( A , ) - A M ~ / ~ - ~ ,  M-+CO, (3.8) 

The form (3.6) however suggests extrapolating the sequence 

for a / v  - 1. The resulting tables of VBS approximants are better behaved than those to 
CM(A) (see e.g. table 5 ) .  The region of insensitivity to E is however rather narrow, and 
thus as our final estimate we take 

l - a l v  =0.60*0.01. (3.9) 
Combining (3.4), (3.5) and (3.9) yields the final estimates for the critical exponents 

a ,  v and y themselves, which are given in § 5 .  

Table 5. VBS approximants to 1 - - C Y / V  for 2 3  model ( E  = -0.2). 

0.887 05 
0.677 73 0.616 64 
0.630 44 0.603 87 0.596 58 
0.613 43 0.599 92 0.599 70 0.599 94 
0.605 90 0.599 72 0.599 92 0.599 97 
0.602 51 0.594 58 0.596 36 
0.600 13 0.598 74 
0.599 25 

3.4. Other extrapolation procedures 

Since the use of VBS approximants is new, it seems worthwhile to make some 
comparison with other extrapolation techniques (see also Barber and Hamer 1981). As 
a test case, we use the susceptibility data presented above. 

The simplest way to estimate the susceptibility index (see e.g. Hamer and Barber 
1981a) is to plot In xM against In M, and fit a straight line to the data whose slope should 
be y / v .  Applying this method to the Z3 susceptibility data, we find y/v = 1.78. This 
crude technique takes no account of finite-lattice corrections, and the accuracy of the 
result is correspondingly low. 

An alternative method is to regard the finite-lattice data as terms in a power series 

(3.10) 

where we take x0 = 1.. Equation (2.13) then implies that 

G(z)  - (1 - z ) - " / ' - ~ ,  z + l .  (3.11) 

Hence one should be able to estimate ( y / v + l )  from Pad6 approximants to 
(1 - z )  d [In G(z)]/dz evaluated at z = 1. These values are listed in table 6; they suggest 

(3.12) y/v = 1.75 i. 0.02, 

which is consistent with (3.5). 
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Table 6. [L,  MI Pad6 approximants to (1 -2 )  d[ln G(z)] /dz evaluated at z = 1.  

M\L 2 3 4 
\ 

2 2.422 2.789 2.737 
3 2.554 2.757 2.731 
4 2.329 2.744 

It can be seen that the accuracy of the VBS approximant result compares favourably 
with alternative methods. This suggests that VBS approximants may provide an 
important new technique in the extrapolation of sequences and series (see also Barber 
and Hamer 1981). 

4. Results for Z5 model 

There has been some debate about the phase structure of the Z S  model. In their original 
paper, EPS showedt that for large enough p values, the 2, models must have a 
three-phase structure with a central, massless phase delimited by a dual pair of critical 
points in A. From a strong-coupling perturbation expansion, they argued that this was 
already true for p = 5 ,  and estimated the strong-coupling critical point to lie at A, = 0.92 
for that model. At this point, the mass gap is expected to vanish as 

F(A)  - exp[-b/(A,- A)"], (4.1) 
where EPS estimated (T = 0.22 in contrast to the accepted Kosterlitz (1974) value of 
(T = t which applies to the O(2) model and apparently to 2, models with p > 5 (EPS). 

More recently, Roomany and Wyld (1981) have performed a finite-lattice analysis 
of the 2 5  model. They concluded that the critical point lay at h,-0.97 but that the 
transition was of the conventional second-order type with the mass gap vanishing 
algebraically in A, - A with v = 2.4. 

We have calculated the Zs Hamiltonian eigenvalues as functions of A and h for 
lattices of up to five sites and as functions of A alone up to seven sites. Again periodic 
boundary conditions were applied. 

In order to estimate the critical point and to obtain a qualitative picture of the critical 
behaviour, we first look at the scaled mass gap ratios RM((h) which are depicted for 
M = 2 to 5 in figure 3. It can be seen that these ratios all pass through unity at a steadily 
increasing sequence of positions AM. They do not, however, seem to be converging 
towards a finite limiting slope as they pass through unity, as one would expect for a 
conventional critical point (Hamer and Barber 1980, 1981a). Rather, the slope 
decreases as M increases, suggesting that it will go to zero as M -+ W. This behaviour is 
similar to that found in the O(2) model (Hamer and Barber 1981b) and is suggestive of 
the expected Kosterlitz-Thouless transition. 

Assuming that the critical point estimates A M  converge logarithmically as usual, and 
applying the VBS approximants, we obtain a 'best' estimate for A, of 

A, = 0.990 f 0.005 (4.2) 

t This conclusion has, strictly speaking, only been established for the Lagrangian version of the models (see 
also Wu 1979, Cardy 1980). It is expected to hold also for the Hamiltonian version on universality grounds. 
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Figure 3. Scaled mass gap ratios RM(A)  for the Z5 model, plotted against A for M = 2, 3 , 4  
and 5. 

(table 7).  Thus the strong-coupling critical point appears to be very close to, but just 
short of, the self-dual point A = 1. This implies a very small region in which the 
intermediate massless phase exists. 

If the mass gap vanishes as in (4.1), then at A c  the finite-lattice estimates of the p 
function (2.5) should vary (Hamer and Barber 1981b) as 

P ~ ( A J  - (In M ) - ( ’ + ~ ) ’ ~ .  (4.3) 

Unfortunately, this result appears to be of little use in exploring the critical behaviour 
(as was found previously for the O(2) model, Hamer and Barber 1981b). 

The Roomany-Wyld approximants pLw are however more useful. Extrapolating 
these via the VBS approximants yields the estimate of the infinite-lattice p function 
depicted in figure 4. From A = 0.6 onwards, this curve is well fitted by a function of the 
form 

p ( g ) / g  -constant ( A ~ - A ) ’ + ~ ,  (4.4) 

(T = 0.6* 0.1. (4.5) 

which is implied by (4.1). From the fit (see figure 5 )  we estimate 

Table 7. VBS approximants to A, for Z5 model ( E  = 0.0). 

0.669 685 
0.893 611 0.950 904 
0.939 231 0.967 258 0.988 212 
0.956 592 0.974 i i 6  0.989 915 
0.965 328 0.977 950 
0.970 491 
- 
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A 

202 1 

Figure 4. The Callan-Symanzik function p ( g ) / g  plotted against A for the Z5 model. The 
curve was obtained by sequence extrapolation from the Roomany-Wyld finite-lattice 
estimates. Expected errors are of order the width of the line. 

In iX,-hI  

Figure 5. Plot of In[@(g)/g] against In(A,-A) for the 2, model. The data points were 
obtained by sequence extrapolation from the Roomany-Wyld finite-lattice estimates; and a 
straight-line fit is shown. 



2022 C J Hamer and M N Barber 

This value is larger than that estimated by EPS and consistent with the 'standard' 
Kosterlitz-Thouless value of 0.5. 

The finite-lattice results for the specific heat are shown in figure 6(a),  together with 
an estimate of their bulk limit obtained again using the VFS approximants. The specific 
heat shows no sign of a singularity at the critical point. Indeed, there is relatively little 
size dependence, a good indication of the absence of a critical singularity. Again this 
behaviour is similar to that observed in the O ( 2 )  model. 
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Figure 6. Diagrams of (a )  the specific heat C(A), and (6) the quantity Q ( A ) =  
In[~M(A)/A2]/ln[FM(A)], plotted against A for the 2, model. The full lines are finite-lattice 
results, labelled by the lattice size M ;  the broken lines are estimates of the bulk limit, 
obtained by sequence extrapolation. The errors in these estimates are probably 5-10%. 

Finally, in figure 6(b), we plot values of ~ ~ [ x ~ ( A ) / A ~ ] / ~ ~ [ F ~ ( A ) ] ,  where xM(A) is the 
susceptibility. The curve for the bulk limit was again estimated using VBS approximants. 
At A,, this curve yields an estimate of the exponent 7 via the result (Hamer and Kogut 
1979,1980) 

(4.6) lim {ln[,yM(A)/A2]/ln FM(A)} = 2 - 77. 
A+/ \ ,  

From figure 6(b) we thus obtain the estimate 

2 - 77 = 1.7 k0.1,  (4.7) 
which is consistent with q =$. However, our sequence is too short for the VBS 
approximants to provide an accurate quantitative estimate. 
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5. Summary and conclusions 

Our object in this paper was to investigate the use of sequence extrapolation techniques 
in conjunction with finite-size scaling methods (Fisher and Barber 1972, Hamer and 
Barber 1980) in order to obtain accurate estimates of the critical parameters of the bulk 
system from finite-lattice data. The particular sequence transformation we used to 
accelerate the convergence of the finite-lattice data is due originally to Vanden Broeck 
and Schwartz (1979), who introduced a general family of such transformations defined 
by (2.17). This family depends on a set of free parameters (see (2.17)), and we have for 
the most part specified these by (2.21) (see also Barber and Hamer 1981). Combined 
with a ’shifting’ procedure (see P 3.2), we have found these techniques, overall, to work 
remarkably well. 

The results obtained for the two particular models investigated were as follows. 
(a) Z3 model 

The EPS conclusion (Elitzur et a1 1979) was confirmed with high accuracy: the 2 3  or 
three-state Potts model has a two-phase structure, with a conventional critical pcint at 
the self-dual coupling of A = 1. The critical exponents a,  y and v were estimated to be 

v = 0.8333*0.0003, y = 1.444*0.002, a = 0.33 * 0.01. 

These figures agree with those of previous estimates of these exponents by alternative 
methods (see Hamer and Kogut (1980) for a sunimary and comparison of previous 
calculations), but are at least an order of magnitude more accurate. They are in 
excellent agreement with the hypothesis (Alexander 1975) that the Z3 (or three-state 
Potts) model lies in the same universality class as the ‘hard hexagon’ model solved 
recently by Baxter (1980). This means that the critical exponents should be the same 
for both models, namely v = 2, y = 7 and a = 5.  Our results leave little room for doubt 
that this hypothesis is correct (see also Nienhuis et a1 1380, Hamer and Kogut 1980, 
Kogut et a1 1980). 

Here we agree with Elitzur et a1 (1979) and disagree with Roomany and Wyld (1981), in 
concluding that the model has a three-phase structure with an exponential, Kosterlitz- 
Thouless type phase transition at the two dual critical points. We find the critical point 
in the strong-coupling region to be A, = 0.990 f 0.005, just short of the self-dual point 
A = 1. The central massless phase is thus very small, if indeed it exists at all. We find a 
value for the exponential critical index U (recall (4.1)) of U = 0.6 * 0.1, consistent with 
the standard Kosterlitz value of 3. Thus our quantitative results differ quite substan- 
tially from the EPS results of A,-0.92 and ~ ~ 0 . 2 2 ,  obtained via a strong-coupling 
series analysis. 

These results for the Z3 and Zs  models suggest that the combination of convergence 
acceleration methods with finite-size scaling yields a powerful tool for the investigation 
of critical behaviour. By forming a sequence of finite-lattice estimates for some 
quantity at the expected critical point, one is able to ‘sit on top of’ the singularity of 
interest and eliminate all unphysical singularities which tend to bedevil the con- 
ventional series techniques. The finite-lattice sequences display smooth and regular 
convergence, and we have found that no particular difficulties arise even when confluent 
singularities are expected as in the 2 3  model. (In contrast, see Kogut et al (1980) who 
analyse in detail the perturbation series for Z3.) These methods should be very useful 
for all sorts of two-dimensional lattice models, both in statistical mechanics and field 
theory. 
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(b) Z5 model 
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In higher dimensions the utility of the methods is less clear. Because of simple 
counting problems caused by the rapid increase of sites with the linear dimension of the 
lattice, it becomes much more difficult actually to compute the Hamiltonian eigenvalues 
on a sequence of lattices of reasonable size. If the finite-lattice sequences are too short, 
the sequence extrapolation procedures will be of limited use. Nevertheless, preliminary 
investigations (Roomany and Wyld (1980), who studied Z, in ( 2 +  1) dimensions) 
suggest that one may still be able at least to obtain reliable qualitative pictures of a 
model’s behaviour from finite lattices of extremely small size. 

Appendix. Comparison of numerical methods 

Methods for the numerical computation of Hamiltonian eigenvalues on a finite lattice 
have been discussed in previous works (Hamer and Barber 1981b, Roomany er a1 
1980). We refer to these for background material. 

There are two main stages to the calculation. 
Stage 1. Construction of a set of orthonormal basis states on the finite lattice, and 
calculation of the matrix elements Hij connecting them. Here 

One starts from an eigenstate of Ho, and constructs further basis states by successive 
applications of the operator V (see references above). 
Stage 2. Calculation of the eigenvalues of the matrix [Hi,]. Standard library sub- 
routines are available for this part of the calculation. 

We have used two different methods for our calculations. 
(A) One of us (CJH) catalogued each individual spin configuration as a separate 

basis state, held in a single, address-sorted, master file at stage 1. Successive appli- 
cations of V rapidly build up a complete set of basis states for Z3 and Zs models on a 
finite lattice. Stage 2 was then performed by an iterative method, for each desired 
parameter value, and to any desired level of accuracy. 

Advantages of the method are the saving of storage space, since each configuration 
is only stored once, and no coefficients are needed; and efficient generation of basis 
states, since each spin configuration need only be processed (by application of V) once. 
The disadvantage is that the calculation of eigenvalues (stage 2) is slow because of the 
large number of basis states. 

(B) The other author (MNB) used the Lanczos technique (Paige 1972, Hamer and 
Barber 1981b, Roomany et a1 1980). Details of this method may be found in the 
references above. The great advantage of this method is that the Hamiltonian is 
brought to a tridiagonal form, on relatively few basis states, so that stage 2 is very quick. 
Disadvantages are that the basis states contain large numbers of spin configurations, 
each with different coefficients, so that large amounts of storage space are required. 
Numerical accuracy has to be carefully watched; and stage 1 of the calculation has to be 
repeated, at least in part, for each different set of parameter values (because the 
coefficients of the spin configurations depend on the parameters). 

Thus method (B) is more laborious at stage 1, but much quicker at stage 2. We tend 
to favour method (A) because it is easier to obtain high accuracy, and because as one 
goes to higher dimensions stage 1 of the calculations becomes very much more difficult. 
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